海杂波特性认知研究进展与展望

丁昊 董云龙 刘宁波 王国庆 关键

丁昊, 董云龙, 刘宁波, 王国庆, 关键. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499-516. doi: 10.12000/JR16069
引用本文: 丁昊, 董云龙, 刘宁波, 王国庆, 关键. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499-516. doi: 10.12000/JR16069
Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069
Citation: Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069

海杂波特性认知研究进展与展望

DOI: 10.12000/JR16069 CSTR: 32380.14.JR16069
基金项目: 

国家自然科学基金(61179017,61201445,61401495)

详细信息
    作者简介:

    丁昊(1988-),男,博士研究生,主要研究方向为海杂波特性认知、雷达目标检测等。E-mail:hao3431@tom.com;关键(1968-),男,教授,博士生导师,获全国优秀博士学位论文奖,新世纪百千万人才工程国家级人选。主要研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合。E-mail:guanjian96@tsinghua.org.cn

    通讯作者:

    丁昊hao3431@tom.com;关键guanjian96@tsinghua.org.cn

    丁昊hao3431@tom.com;关键guanjian96@tsinghua.org.cn

Overview and Prospects of Research on Sea Clutter Property Cognition

Funds: 

The National Natural Science Foundation of China (61179017, 61201445, 61401495)

  • 摘要: 海杂波是影响海用雷达目标探测性能的主要制约因素之一,其物理机理复杂,影响因素众多,且非高斯、非平稳特性显著,因此海杂波特性认知研究是一项极其复杂的系统工程。该文从数据层海杂波特性认知出发,围绕目标检测算法所关注的海杂波幅度分布特性、谱特性、相关性及非平稳与非线性特性,回顾和总结了海杂波特性认知研究进展,梳理了主要研究结论。在此基础上,从海杂波影响因素的深化分析、海杂波精细化建模与检测器需求的博弈、海杂波与目标差异特性认知等4个方面展望了有待于进一步探索的问题。

     

  • [1] Ward K and Watts S. Use of sea clutter models in radar design and development[J]. IET Radar, Sonar & Navigation, 2010, 4(2):146-157.
    [2] Ward K, Tough R, and Watts S. Sea Clutter:Scattering, the K-distribution and Radar Performance, 2nd ed[M]. London:The Institution of Engineering and Technology, 2013.
    [3] Long M W. Radar Reflectivity of Land and Sea, 3nd ed[M]. London:Artech House radar library, 2001.
    [4] Skolnik M I. Radar Handbook, 3nd ed[M]. New York:The McGraw-Hill Companies Inc., 2008.
    [5] Gini F, Farina A, and Greco M. Selected list of references on radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1):329-359.
    [6] Daley J C, Ransone J T, Burkett J A, et al.. Sea clutter measurements on four frequencies[R]. Naval Research Laboratory Report 6806, November 1968.
    [7] Titi G W and Marshall D F. The ARPA/Navy Mountaintop program:adaptive signal processing for airborne early warning radar[C]. In Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996:1165-1168.
    [8] Little M O and Berry W P. Real-time multichannel airborne radar measurements[C]. IEEE National Radar Conference, 1997:138-142.
    [9] Charles L R, Eckert E, Siegel A, et al.. X-band low-grazing-angle ocean backscatter obtained during LOGAN 1993[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1):18-26.
    [10] Drosopoulos A. Description of the OHGR database[R]. Defence Research Establishment Ottawa, Technical Note 94-14, 1994.
    [11] Wind H J De, Cilliers J C, and Herselman P L. Sea clutter and small boat radar reflectivity databases[J]. IEEE Signal Processing Magazine, 2010, 32(2):145-148.
    [12] Hair T, Lee T, and Baker C J. Statistical properties of multifrequency high-range-resolution sea reflections[J]. IEE Proceedings-F, 1991, 138(2):75-79.
    [13] Carretero-Moya J, Gismero-Menoyo J, Blanco-del-Campo A, et al.. Statistical analysis of a high-resolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):2024-2037.
    [14] Antipov I. Simulation of sea clutter returns[R]. Technical Report, DSTO-TR-0679, 1998.
    [15] Antipov I. Analysis of sea clutter data[R]. Technical Report, DSTO-TR-0647, 1998.
    [16] Choong P L. Modelling airborne L-band radar sea and coastal land clutter[R]. Technical Report, DSTO-TR-0945, 2000.
    [17] Antipov I. Statistical analysis of northern Australian coastline sea clutter data[R]. Technical Report, DSTO-TR-1236, 2002.
    [18] Dong Y. Clutter spatial distribution and new approaches of parameter estimation for Weibull and K-distributions[R]. Technical Report, DSTO-RR-0274, 2004.
    [19] Dong Y. Distribution of X-band high resolution and high grazing angle sea clutter[R]. Technical Report, DSTO-RR-0316, 2006.
    [20] Dong Y. High grazing angle and high resolution sea clutter correlation and polarization analyses[R]. Technical Report, DSTO-TR-1972, 2007.
    [21] Dong Y and Merrett D. Statistical measures of S-band sea clutter and targets[R]. Technical Report, DSTO-TR-2221, 2008.
    [22] Dong Y and Merrett D. Analysis of L-band multi-channel sea clutter[R]. Technical Report, DSTO-TR-2455, 2010.
    [23] Bocquet S. Calculation of radar probability of detection in K-distributed sea clutter and noise[R]. Technical Report, DSTO-TN-1000, 2011.
    [24] Weinberg G. Investigation of the Pareto distribution as a model for high grazing angle clutter[R]. Technical Report, DSTO-TR-2525, 2011.
    [25] Dong Y, Rosenberg L, and Weinberg G. Generating correlated gamma sequences for sea-clutter simulation[R]. Technical Report, DSTO-TR-2688, 2012.
    [26] Rosenberg L and Watts S. High grazing angle sea-clutter literature review[R]. Technical Report, DSTO-GD-0736, 2013.
    [27] Whitrow J L. A model of low grazing angle sea clutter for coherent radar performance analysis[R]. Technical Report, DSTO-TR-2864, 2013.
    [28] Rosenberg L. Sea-spike detection in high grazing angle X-band sea-clutter[R]. Technical Report, DSTO-TR-2820, 2013.
    [29] Ward K D, Barker C J, and Watts S. Maritime surveillance radar Part 1:Radar scattering from the ocean surface[J]. IEE Proceedings-F, 1990, 137(2):51-63.
    [30] Greco M, Gini F, and Rangaswamy M. Statistical analysis of measured polarimetric clutter data at different range resolutions[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6):473-481.
    [31] Gregers-Hansen V and Mital R. An improved empirical model for radar sea clutter reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3512-3524.
    [32] Raynal M A and Doerry A W. Doppler characteristics of sea clutter[R]. Technical Report, SAND2010-3828, 2010.
    [33] Watts S. Modeling and simulation of coherent sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3303-3317.
    [34] Al-Ashwal W A, Woodbridge K, and Griffiths H D. Analysis of bistatic sea clutter-Part I:Average reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1283-1292.
    [35] Al-Ashwal W A, Woodbridge K, and Griffiths H D. Analysis of bistatic sea clutter-Part Ⅱ:Amplitude statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1293-1303.
    [36] Gini F and Greco M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):115-124.
    [37] Plant W J. Microwave sea return at moderate to high incidence angles[J]. Waves in Random Media, 2003, 13(4):339-354.
    [38] Gotwols B L, Thompson D R, and Chapman R D. Ocean backscatter distribution functions at mid incidence[C]. Proceedings Engineering in Harmony with Ocean, 1993:Ⅱ/10.
    [39] Greco M, Stinco P, and Gini F. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1502-1513.
    [40] Lamont-Smith T, Waseda T, and Rheem C K. Measurements of the Doppler spectra of breaking waves[J]. IET Radar, Sonar & Navigation, 2007, 1(2):149-157.
    [41] Trunk G V and George S F. Detection of targets in non-Gaussian sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, 6(5):620-628.
    [42] Trunk G V. Radar properties of non-Rayleigh sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(2):196-204.
    [43] Trunk G V. Non-Rayleigh sea clutter:Properties and detection of targets[R]. NRL Report, 1976, No. 7986.
    [44] Jakeman E and Pusey P N. A model for non-Rayleigh sea echo[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(6):806-814.
    [45] Sangston K J and Gerlach K R. Coherent detection of radar targets in a non-Gaussian background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2):330-340.
    [46] Chan H C. Radar sea-clutter at low grazing angles[J]. IEE Proceedings-F, 1990, 137(2):102-112.
    [47] Stehwien W. Statistics and correlation properties of high resolution X-band sea clutter[C]. Proceedings of the 1994 IEEE National Radar Conference, 1994:36-51.
    [48] Conte E, Maio A De, and Galdi C. Statistical analysis of real clutter at different range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3):903-918.
    [49] Haykin S, Bakker R, and Currie B W. Uncovering nonlinear dynamics:The case study of sea clutter[J]. Proceedings of the IEEE, 2002, 90(5):860-881.
    [50] Greco M, Bordoni F, and Gini F. X-band sea-clutter nonstationarity:Influence of long waves[J]. IEEE Journal of Ocean Engineering, 2004, 29(2):269-283.
    [51] Watts S and Wicks D C. Empirical models for prediction in K-distribution radar sea clutter[C]. IEEE International Radar Conference, 1990:189-194.
    [52] Ryan J and Johnson M. Radar performance prediction for target detection at sea[C]. IEE Conference Radar-92, 1992:13-17.
    [53] Conte E, Lops M, and Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2):617-625.
    [54] Conte E, Lops M, and Ricci G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8):248-250.
    [55] Conte E and Maio A D. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Ocean Engineering, 2004, 29(2):284-302.
    [56] Pulsone N B and Raghavan R S. Analysis of an adaptive CFAR detector in non-Gaussian interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):903-916.
    [57] Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds[J]. IEEE Transactions on Signal Processing, 2005, 53(6):2101-2111.
    [58] Farina A, Gini F, Greco M V, et al.. High resolution sea clutter data:Statistical analysis of recorded live data[J]. IEE Proceedings-Radar, Sonar and Navigation, 1997, 144(3):121-130.
    [59] Shnidman D A. Generalized radar clutter model[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):857-865.
    [60] Rosenberg L and Bocquet S. Application of the Pareto plus noise distribution to medium grazing angle sea-clutter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):255-261.
    [61] Liu Y, Frasier S J, and Mcintosh R E. Measurement and classification of low-grazing-angle radar sea spikes[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1):27-40.
    [62] Gutnik V G, Kulemin G P, and Sharapov L. Spike statistics features of the radar sea clutter in the millimeter wave band at extremely small grazing angles[J]. Physics and Engineering of Millimeter and Sub-Millimeter Waves, 2001, 43(3):426-428.
    [63] Melief H W, Greidanus H, and Genderen P. Analysis of sea spikes in radar sea clutter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4):985-993.
    [64] Lyzenga D R, Maffett A L, and Shuchman R A. The contribution of wedge scattering to the radar cross section of the ocean surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(4):502-505.
    [65] Keller M R, Gotwols B L, and Chapman R D. Multiple sea spike definitions:Reducing the clutter[C]. Geoscience and Remote Sensing Symposium, 2002:940-942.
    [66] Posner F and Gerlach K. Sea spike demographics at high range resolutions and very low grazing angles[C]. Radar Conference, Proceedings of the 2003 IEEE, 2003:38-45.
    [67] Posner F L. Spiky sea clutter at high range resolutions and very low grazing angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1):58-73.
    [68] Greco M, Stinco P, and Gini F. Identification and analysis of sea radar clutter spikes[J]. IET Radar, Sonar & Navigation, 2010, 4(2):239-250.
    [69] Rosenberg L. Sea-spike detection in high grazing angle X-band sea-clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4556-4562.
    [70] Middleton D. New physical-statistical methods and models for clutter and reverberation:The KA-distribution and related probability structures[J]. IEEE Journal of Ocean Engineering, 1999, 24(3):261-283.
    [71] Ward K D and Tough R J. Radar detection performance in sea clutter with discrete spikes[C]. International Conference Radar 2002, 2002:253-257.
    [72] Watts S, Ward K D, and Tough R J A. The physics and modelling of discrete spikes in radar sea clutter[C]. Proceedings of International Radar Conference, 2005:72-77.
    [73] Rosenberg L, Crisp D J, and Stacy N J. Analysis of the KK-distribution with medium grazing angle sea-clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):209-222.
    [74] Blunt S D, Gerlach K, and Heyer J. HRR detector for slow-moving targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):965-974.
    [75] 许心瑜, 张玉石, 黎鑫, 等. L波段小擦地角海杂波KK分布建模[J]. 系统工程与电子技术, 2014, 36(7):1304-1308. Xu X Y, Zhang Y S, Li X, et al.. KK distribution modeling with L band low grazing sea clutter[J]. Systems Engineering and Electronics, 2014, 36(7):1304-1308.
    [76] 高彦钊, 占荣辉, 万建伟. KK分布杂波下的距离扩展目标检测算法[J]. 国防科技大学学报, 2015, 37(1):118-124. Gao Y Z, Zhan R H, and Wan J W. Range-spread target detection in KK-distributed clutter[J]. Journal of National University of Defense Technology, 2015, 37(1):118-124.
    [77] Ding H, Huang Y, Liu N B, et al.. Modeling of sea spike events with generalized extreme value distribution[C]. Proceedings European Radar Conference (EuRAD), 2015:113-116.
    [78] Balleri A, Nehorai A, and Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2):775-780.
    [79] Gotwols B L and Thompson D R. Ocean microwave backscatter distributions[J]. Journal of Geophysical Research, 1994, 99(C5):9741-9750.
    [80] Ollila E, Tyler D E, Koivunen V, et al.. Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12):876-879.
    [81] Anastassopoulos V, Lampropoulos G A, and Drosopoulos A. High resolution radar clutter statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1):43-60.
    [82] Fayard P and Field T R. Inference of a generalised texture for a compound-Gaussian clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):187-194.
    [83] Gini F, Greco M, Diani M, et al.. Performance analysis of two adaptive radar detectors against non-Gaussian real sea clutter data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1429-1439.
    [84] Farshchian M and Posner F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter[C]. IEEE Radar Conference, 2010:789-793.
    [85] Rosenberg L and Bocquet S. The Pareto distribution for high grazing angle sea-clutter[C]. IEEE International Geoscience and Remote Sensing Symposium, 2013:4209-4212.
    [86] Weinberg G V. Assessing Pareto fit to high-resolution high-grazing-angle sea clutter[J]. Electronics Letters, 2011, 47(8):516-517.
    [87] Rosenberg L, Watts S, and Bocquet S. Application of the K+Rayleigh distribution to high grazing angle sea-clutter[C]. International Radar Conference, 2014:1-6.
    [88] Fiche A, Angelliaume S, Rosenberg L, et al.. Analysis of X-Band SAR sea-clutter distributions at different grazing angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4650-4660.
    [89] Hu J, Tung W, and Gao J. A new way to model nonstationary sea clutter[J]. IEEE Signal Processing Letters, 2009, 16(2):129-132.
    [90] Tsihrintzis G A and Nikias C L. Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 1997, 144(1):29-37.
    [91] 石志广, 周剑雄, 付强. K分布海杂波参数估计方法研究[J]. 信号处理, 2007, 23(3):420-424. Shi Z G, Zhou J X, and Fu Q. Parameter estimation study of K-distributed sea clutter[J]. Signal Processing, 2007, 23(3):420-424.
    [92] Marier L J. Correlated K-distributed clutter generation for radar detection and track[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2):568-580.
    [93] Davidson G. Simulation of coherent sea clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):168-177.
    [94] Pidgeon V W. Doppler dependence of radar sea return[J]. Journal of Geophysical Research, 1968, 73:1333-1341.
    [95] Lee P, Barter J D, Beach K L, et al.. Power spectral lineshapes of microwave radiation backscattered from sea surfaces at small grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(5):252-258.
    [96] Lamont-Smith T. An empirical model of EM scattering from steepening wave profiles derived from numerical computations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1447-1454.
    [97] Lamont-Smith T. Investigation of the variability of Doppler spectra with radar frequency and grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(5):291-298.
    [98] Lamont-Smith T. Azimuth dependence of Doppler spectra of sea clutter at low grazing angle[J]. IET Radar, Sonar & Navigation, 2008, 2(2):97-103.
    [99] Lamont-Smith T, Mitomi M, Kawamura T, et al.. Electromagnetic scattering from wind blown waves and ripples modulated by longer waves under laboratory conditions[J]. IET Radar, Sonar & Navigation, 2010, 4(2):265-279.
    [100] Lee P, Barter J D, and Lake B M. Lineshape analysis of breaking wave Doppler spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(2):135-139.
    [101] Walker D. Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(3):114-120.
    [102] Walker D. Doppler modelling of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(2):73-80.
    [103] Rosenberg L. Characterization of high grazing angle X-band sea-clutter Doppler spectra[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):406-417.
    [104] Rosenberg L and Stacy N J. Analysis of medium grazing angle X-band sea-clutter Doppler spectra[C]. Proceedings of the IEEE Radarcon Conference, 2008:1-6.
    [105] Watts S. The effects of covariance matrix mismatch on adaptive CFAR performance[C]. IEEE Radar 2013 International Conference, 2013:495-499.
    [106] Miller R J. Variability in spectra of low-grazing angle sea clutter returns[R]. NATO/RTO Publications, Proceedings of SET Symposium on Low Grazing Angle Clutter:Its Characterisation, Measurement and Application, 2000.
    [107] Ritchie M A, Stove A G, Watts S, et al.. Application of a new sea clutter Doppler model[C]. IEEE Radar 2013 International Conference, 2013:560-565.
    [108] Watts S, Rosenberg L, Bocquet S, et al.. Doppler spectra of medium grazing angle sea clutter Part 1:Characterisation[J]. IET Radar, Sonar & Navigation, 2016, 10(1):24-31.
    [109] Watts S, Rosenberg L, Bocquet S, et al.. Doppler spectra of medium grazing angle sea clutter Part 2:Model assessment and simulation[J]. IET Radar, Sonar & Navigation, 2016, 10(1):32-42.
    [110] Baker C J. K-distributed coherent sea clutter[J]. IEE Proceedings-F, 1991, 138(2):89-92.
    [111] Ritchie M A, Woodbridge K, and Stove A G. Analysis of sea clutter distribution variation with Doppler using the compound K-distribution[C]. IEEE Radar 2010 International Conference, 2010:495-499.
    [112] Ding H, Sun Y L, Liu N B, et al.. Bispectrum property analysis of high resolution real sea clutter[C]. IET International Radar Conference, 2015:1-4.
    [113] Haykin S and Thomson D J. Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem[J]. Proceedings of the IEEE, 1998, 86(11):2325-2344.
    [114] Guan J, Zhang J, and Liu N B. Time-frequency entropy of Hilbert-Huang transformation for detecting weak target in the sea clutter[C]. 2009 IEEE Radar Conference, 2009:1-5.
    [115] 张建, 黄勇, 关键, 等. 基于局部Hilbert边际谱隶属度的微弱目标检测算法[J]. 信号处理, 2011, 27(9):1335-1340. Zhang J, Huang Y, Guan J, et al.. Weak target detection based on the membership degree of partial Hilbert marginal spectrum[J]. Signal Processing, 2011, 27(9):1335-1340.
    [116] Chen X L, Guan J, Bao Z H, et al.. Detection and extraction of target with micro-motion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1002-1018.
    [117] Rosenberg L. The effect of temporal correlation with K and KK-distributed sea-clutter[C]. IEEE Radarcon Conference, 2012:0303-0308.
    [118] Siegel A, Ochadlick A, Davis Jr J, et al.. Spatial and temporal correlation of LOGAN-1 high-resolution radar sea clutter data[C]. IEEE International Conference on Geoscience and Remote Sensing Symposium, 1994:818-821.
    [119] Farina A, Gini F, Greco M V, et al.. Improvement factor for real sea-clutter Doppler frequency spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5):341-344.
    [120] Watts S. Cell-averaging CFAR gain in spatially correlated K-distributed clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5):321-327.
    [121] Raghavan R S. A model for spatially correlated radar clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2):268-275.
    [122] Lombardo P and Oliver C J. Estimating the correlation properties of K-distributed SAR clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(4):167-178.
    [123] Watts S and Ward K D. Spatial correlation in K-distributed sea clutter[J]. IEE Proceedings F Communications, Radar and Signal Processing, 1987, 134(6):526-532.
    [124] Armstrong B C and Griffiths H D. Modeling spatially correlated K-distributed clutter[J]. Electronics Letters, 1991, 27(15):1355-1356.
    [125] Armstrong B C and Griffiths H D. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter[J]. IEE Proceedings F-Radar and Signal Processing, 1991, 138(2):139-152.
    [126] Tough R J A, Ward K D, and Shepherd P W. The modelling and exploitation of spatial correlation in spiky sea clutter[C]. EMRS DTC 2nd Annual Conference, 2005:A1.
    [127] 关键, 丁昊, 黄勇, 等. 实测海杂波数据空间相关性研究[J]. 电波科学学报, 2012, 27(5):943-954. Guan J, Ding H, Huang Y, et al.. Spatial correlation property with measured sea clutter data[J]. Chinese Journal of Radio Science, 2012, 27(5):943-954.
    [128] Ding H, Guan J, Liu N B, et al.. New spatial correlation models for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1833-1837.
    [129] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12):1-9. He Y, Huang Y, Guan J, et al.. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12):1-9.
    [130] Stankovic L, Thayaparan T, and Dakovic M. Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4332-4342.
    [131] Dong Y H and Crisp D J. The Euler decomposition and its application to sea clutter analysis[C]. IEEE International Conference on Radar, 2008:133-138.
    [132] Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and Non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 1998, 454(1971). doi: 10.1098/rspa.1998.0193.
    [133] Gini F and Greco M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):115-124.
    [134] Gini F, Giannakis G B, Greco M, et al.. Time-averaged subspace methods for radar clutter texture retrieval[J]. IEEE Transactions on Signal Processing, 2001, 49(9):1886-1898.
    [135] Dinesh R and Jeffrey K. Adaptive radar detection in doubly nonstationary autoregressive Doppler spread clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2):484-497.
    [136] Carretero-Moya J, Gismero-Menoyo J, Asensio-Lopez A, et al.. Small-target detection in high-resolution heterogeneous sea-clutter:an empirical analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3):1880-1898.
    [137] Leung H and Lo T. Chaotic radar signal processing over the sea[J]. IEEE Journal of Ocean Engineering, 1993, 18(3):287-295.
    [138] Unsworth C P, Cowper M R, Mclaughlin S, et al.. Re-examining the nature of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):105-114.
    [139] Mcdonald M and Damini A. Limitations of nonlinear chaotic dynamics in predicting sea clutter returns[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(2):105-113.
    [140] Blu T and Unser M. Self-similarity:Part Ⅱ-Optimal estimation of fractal processes[J]. IEEE Transactions on Signal Processing, 2007, 55(4):1364-1378.
    [141] Hu J, Tung W W, and Gao J B. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antenna and Propagation, 2006, 54(1):136-143.
    [142] Hu J, Gao J B, Posner F L, et al.. Target detection within sea clutter:A comparative study by fractal scaling analyses[J]. Fractals, 2006, 14(3):187-204.
    [143] Peng C K, Buldyrev S V, Goldberger A L, et al.. Statistical properties of DNA sequences[J]. Physica A, 1995, 221(1/3):180-192.
    [144] Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al.. Detecting long range correlations with detrended fluctuation analysis[J]. Physica A, 2001, 295(3/4):441-454.
    [145] Bashan A, Bartsch R, Kantelhardt J W, et al.. Comparison of detrending methods for fluctuation analysis[J]. Physica A, 2008, 387(21):5080-5090.
    [146] Xu X K. Low observable targets detection by joint fractal properties of sea clutter:An experimental study of IPIX OHGR datasets[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(4):1425-1429.
    [147] 许小可. 基于非线性分析的海杂波处理与目标检测[D].[博士论文], 大连海事大学, 2008. Xu X K. Sea clutter processing and target detecting based on nonlinear analysis[D].[Ph.D. dissertation], Dalian Maritime University, 2008.
    [148] 丁昊, 关键, 黄勇, 等. 非平稳海杂波的消除趋势波动分析[J]. 电波科学学报, 2013, 28(1):116-123. Ding H, Guan J, Huang Y, et al.. Detrended fluctuation analysis of non-stationary sea clutter[J]. Chinese Journal of Radio Science, 2013, 28(1):116-123.
    [149] Ding H, Wang G Q, and Guan J. Analysis of sea clutter fractal property and target detection based on fit error[C]. Asia-Pacific Conference on Antennas and Propagation Conference, 2012.
    [150] Guan J, Liu N B, Zhang J, et al.. Multifractal correlation characteristic for radar detecting low-observable target in sea clutter[J]. Signal Processing, 2010, 90(2):523-535.
    [151] Liu N B, Ding H, Xue Y H, et al.. Approximate fractality of sea clutter fractional Fourier transform spectrum[C]. Proceedings European Radar Conference (EuRAD), 2015:117-120.
    [152] Guan J, Liu N B, Huang Y, et al.. Fractal characteristic in frequency domain for target detection within sea clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(5):293-306.
    [153] 刘宁波, 关键, 黄勇, 等. 基于海杂波频谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(3):424-431. Liu N B, Guan J, Huang Y, et al.. Target detection within sea clutter based on multi-scale Hurst exponent in frequency domain[J]. Acta Electronica Sinica, 2013, 41(3):424-431.
    [154] 刘宁波, 关键, 王国庆, 等. 基于海杂波FRFT谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(9):1847-1853. Liu N B, Guan J, Wang G Q, et al.. Target detection within sea clutter based on multi-scale Hurst exponent in FRFT domain[J]. Acta Electronica Sinica, 2013, 41(9):1847-1853.
    [155] 刘宁波, 黄勇, 关键, 等. 实测海杂波频域分形特性分析[J]. 电子与信息学报, 2012, 34(4):929-935. Liu N B, Huang Y, Guan J, et al.. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics & Information Technology, 2012, 34(4):929-935.
  • 期刊类型引用(57)

    1. 杨勇,王雪松. 基于杂波拖尾分布的雷达无人机检测性能分析. 系统工程与电子技术. 2024(01): 113-120 . 百度学术
    2. 李经安,刘子龙,韩军,丁良辉. 舰载散射通信自主建链研究. 海军航空大学学报. 2024(01): 182-188 . 百度学术
    3. 薛健,孙孟玲,潘美艳. 基于支持向量回归和分位数的雷达K分布海杂波形状参数估计方法. 电子与信息学报. 2024(04): 1399-1407 . 百度学术
    4. 连静,杨勇,谢晓霞,王雪松. 大掠射角对海雷达导引头实测回波特性分析. 系统工程与电子技术. 2024(05): 1535-1543 . 百度学术
    5. 陈胜垚,胡晨康,程智勇,席峰,刘中. 基于残差单元与注意力门的非对称编解码海杂波抑制网络. 电子学报. 2024(08): 2628-2640 . 百度学术
    6. 叶如,行鸿彦,周星. 基于优化长短时记忆网络的海面微弱目标检测. 探测与控制学报. 2024(05): 57-63+70 . 百度学术
    7. 关键,姜星宇,刘宁波,丁昊,黄勇. 海杂波背景下的双极化最大特征值目标检测. 系统工程与电子技术. 2024(11): 3715-3725 . 百度学术
    8. 华志恒,张金鹏,殷波,王艺卫,张玉石. 复杂时空场景下的海杂波幅度分布一体化预测方法. 电波科学学报. 2024(06): 1146-1153 . 百度学术
    9. 陈鹏,许震,曹振新,王宗新. 基于图特征学习的海杂波抑制算法. 兵工学报. 2023(02): 534-544 . 百度学术
    10. 张玉石,李笑宇,张金鹏,夏晓云. 基于深度学习的海杂波谱参数预测与影响因素分析. 雷达学报. 2023(01): 110-119 . 本站查看
    11. 赵彩霞,王茹琪,柏业超. 基于子频带黎曼距离的海杂波背景下目标检测. 现代雷达. 2023(01): 10-17 . 百度学术
    12. 张梦雨,王中训,李飞,刘宁波,董云龙. CNN海况等级分类方法的性能. 烟台大学学报(自然科学与工程版). 2023(02): 196-203 . 百度学术
    13. 关键,姜星宇,刘宁波,黄勇,丁昊. 海杂波中目标分数域谱范数特征检测方法. 电子与信息学报. 2023(06): 2162-2170 . 百度学术
    14. 施赛楠,姜丽,曹鼎,吴旭姿. 基于频域相对样本熵的海面小目标特征检测. 南京信息工程大学学报(自然科学版). 2023(04): 429-438 . 百度学术
    15. 魏晨依,李舒婉. 不同海况下雷达目标检测性能分析. 中国新技术新产品. 2023(10): 13-15 . 百度学术
    16. 孙庆,杨雪婷,薛春岭,赵静. 基于IPSO算法的KK分布模型参数估计. 宝鸡文理学院学报(自然科学版). 2023(02): 1-7 . 百度学术
    17. 田凯祥,于晓涵,王中训,刘宁波. 基于实测数据的海杂波与海面小目标特征分析. 海军航空大学学报. 2023(04): 313-322 . 百度学术
    18. 薛冰,吴巍. 基于卷积神经网络的海杂波数据分析与鉴别. 电子技术应用. 2023(11): 15-22 . 百度学术
    19. 杜延磊,杨晓峰,汪胜,殷君君,杨会章,杨健. 海面雷达散射及其杂波幅度统计特性的空间遍历性数值仿真研究. 系统工程与电子技术. 2023(12): 3806-3818 . 百度学术
    20. 齐小燕. 基于果蝇优化算法的雷达杂波统计模型参数估计方法. 舰船电子工程. 2022(01): 64-66+72 . 百度学术
    21. 王海峰,行鸿彦,陈梦,陈子正. 基于SSA-SVM的海杂波背景下小信号检测方法. 电子测量与仪器学报. 2022(04): 24-31 . 百度学术
    22. 孙艳丽,姜星宇,刘宁波,陈凯,王月香. 海杂波条件异方差特性分析与波动信息提取. 海军航空大学学报. 2022(04): 295-300 . 百度学术
    23. 周亮,匡华星,张玉涛,丁春,王玲玲. 基于对数正态分布的海杂波修正概率密度分布函数. 雷达与对抗. 2021(01): 18-22 . 百度学术
    24. 时艳玲,刘子鹏,贾邦玲. 样本不平衡下的海杂波弱目标分类研究. 信号处理. 2021(09): 1781-1789 . 百度学术
    25. 刘宁波,姜星宇,丁昊,关键. 雷达大擦地角海杂波特性与目标检测研究综述. 电子与信息学报. 2021(10): 2771-2780 . 百度学术
    26. PAN Meiyan,SUN Jun,YANG Yuhao,LI Dasheng,YU Junpeng. M-FCN based sea-surface weak target detection. Journal of Systems Engineering and Electronics. 2021(05): 1111-1118 . 必应学术
    27. 杜延磊,高帆,刘涛,杨健. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析. 系统工程与电子技术. 2021(10): 2742-2755 . 百度学术
    28. 杜向辉,吴元伟. 雷达导引头抗海背景干扰关键技术研究. 火控雷达技术. 2020(01): 13-18 . 百度学术
    29. 孙江,行鸿彦,吴佳佳. 基于IA-SVM模型的混沌小信号检测方法. 探测与控制学报. 2020(03): 119-125 . 百度学术
    30. 董自巍,孙俊,孙晶明,潘美艳. 稀疏字典学习海面微弱动目标检测. 系统工程与电子技术. 2020(01): 30-36 . 百度学术
    31. 何江恒,耿明,宁晓峰. 基于信号分解的海面微弱目标探测. 电子质量. 2020(11): 148-152 . 百度学术
    32. 赵和鹏,张然. 海杂波中目标检测技术. 电子技术与软件工程. 2020(19): 104-106 . 百度学术
    33. 曹成会,张杰,张晰,孟俊敏,毛兴鹏. 低掠射微波雷达的海杂波多方位幅度特性分析. 信号处理. 2020(12): 2085-2098 . 百度学术
    34. 陈小龙,黄勇,关键,宋伟健,薛永华. MIMO雷达微弱目标长时积累技术综述. 信号处理. 2020(12): 1947-1964 . 百度学术
    35. 王国庆,丁昊,刘宁波,李雪腾. 海杂波谱的机理及时变特性分析. 海军航空工程学院学报. 2019(02): 181-186 . 百度学术
    36. 周明,马亮,王宁,杨予昊. 面向海面目标检测的陆海分离和海面分区算法研究. 雷达学报. 2019(03): 366-372 . 本站查看
    37. 陈世超,罗丰,胡冲,聂学雅. 基于多普勒谱非广延熵的海面目标检测方法. 雷达学报. 2019(03): 344-354 . 本站查看
    38. 蒋千,吴昊,王燕宇. 机载多功能海上监视雷达系统设计与关键技术研究. 雷达学报. 2019(03): 303-317 . 本站查看
    39. 丁昊,刘宁波,董云龙,陈小龙,关键. 雷达海杂波测量试验回顾与展望. 雷达学报. 2019(03): 281-302 . 本站查看
    40. 时艳玲,杜宇翔,蒋锐,王昕. 部分均匀海杂波中基于分组加权的协方差矩阵估计算法. 信号处理. 2019(07): 1170-1179 . 百度学术
    41. 刘宁波,董云龙,王国庆,丁昊,黄勇,关键,陈小龙,何友. X波段雷达对海探测试验与数据获取. 雷达学报. 2019(05): 656-667 . 本站查看
    42. 石彬,胡锦川,赵寅宇. 海杂波对飞行器俯冲角影响分析. 战术导弹技术. 2019(06): 14-18 . 百度学术
    43. 徐雅楠,刘宁波,丁昊,关键,黄勇. 利用CNN的海上目标探测背景分类方法. 电子学报. 2019(12): 2505-2514 . 百度学术
    44. 王国庆,王朝铺,刘传辉,刘宁波,丁昊. 利用神经网络的海杂波幅度分布参数估计方法. 海军航空工程学院学报. 2019(06): 480-487 . 百度学术
    45. 王雪松,杨勇. 海杂波与目标极化特性研究进展. 电波科学学报. 2019(06): 665-675 . 百度学术
    46. 姜星宇,刘宁波,丁昊,关键. 雷达海杂波时频谱特性分析. 海军航空工程学院学报. 2019(05): 413-417 . 百度学术
    47. 王军东. 海杂波对机载雷达探测距离的影响. 电子测量技术. 2018(08): 21-24 . 百度学术
    48. 朱文涛. 海面慢速弱小目标雷达探测技术研究. 科技视界. 2018(22): 64-67 . 百度学术
    49. 夏晓云,黎鑫,张玉石,万晋通. 基于相位的岸基雷达地海杂波分割方法. 系统工程与电子技术. 2018(03): 552-556 . 百度学术
    50. 楼奇哲,寇鹏飞,姚元. 海面小目标检测的自适应背景感知研究. 电子测量技术. 2018(18): 22-26 . 百度学术
    51. 陈泽铭. 基于海尖峰Posner判别准则的新方法. 雷达科学与技术. 2018(05): 554-558+566 . 百度学术
    52. 李重威,杨勇,李永祯,李超. 基于实测数据的分时全极化雷达海杂波分布研究. 电波科学学报. 2017(03): 253-260 . 百度学术
    53. 邓赛强,金林,梁浩. 时空相干相关K分布海杂波仿真. 电子测量技术. 2017(11): 61-65 . 百度学术
    54. 孔维亚,种劲松. 一种面向无参考点的顺轨干涉SAR海面复图像配准方法. 电子与信息学报. 2017(12): 2819-2826 . 百度学术
    55. 鹿玉泽,郑家毅,李伟,蒋孟燃. 干扰条件下弹载认知雷达波形优化研究. 航空兵器. 2017(05): 37-44 . 百度学术
    56. 邓赛强,金林,梁浩. 海杂波背景下的雷达性能评估研究. 雷达科学与技术. 2017(05): 525-530 . 百度学术
    57. 顾智敏,张兴敢,王琼. FRFT域内的海杂波多重分形特性与目标检测. 南京大学学报(自然科学). 2017(04): 731-737 . 百度学术

    其他类型引用(72)

  • 加载中
计量
  • 文章访问数: 4168
  • HTML全文浏览量: 890
  • PDF下载量: 2419
  • 被引次数: 129
出版历程
  • 收稿日期:  2016-04-21
  • 修回日期:  2016-10-09
  • 网络出版日期:  2016-10-28

目录

    /

    返回文章
    返回